Athena計画—Advanced Telescope for High-Energy Astrophysics—

松本浩典

〈名古屋大学素粒子宇宙起源研究機構(KMI)現象解析研究センター 〒464-8602 名古屋市千種区不老町〉 e-mail: matumoto@u.phys.nagoya-u.ac.jp

欧州宇宙機構が2028年に打ち上げる大型衛星計画Athenaは、ASTRO-H衛星の後、確定している世界で唯一の大型X線天文台である。大面積・高角度分解能を誇るX線望遠鏡、高エネルギー分解能のTES X線カロリメーター、広い視野のDEPFET半導体検出器を搭載し、X線天文学の新たな時代を切り開くと期待される。すざく衛星で行おうとしたX線カロリメーターによるX線天文学は、ASTRO-H衛星によってようやく実現し、そしてAthena衛星によってさらに発展する。本稿ではAthena計画の概要を説明し、日本の研究者がAthenaにどのように関わるのかを述べる。

1. Cosmic Vision

欧州宇宙機関(European Space Agency; ESA) は「Cosmin Vision」として、宇宙ミッションに よって挑戦すべきサイエンス課題の長期計画をま とめている¹⁾. この計画に沿って2028年に打ち 上げ予定の大型サイエンスミッションが挑むサイ エンステーマとして、2013年11月に"The Hot and Energetic Universe"が選ばれた²⁾. これは、

- "Hot Universe": どのようにして物質が集 積して、今日の大規模構造を形成したのか
- "Energetic Universe": どのようにして超 巨大ブラックホールは成長し、そして宇宙 に影響を与えたのか

という,宇宙物理の二つの根本問題の解明を目指 すものである.

そして2014年6月, "The Hot and Energetic Universe" に挑戦するためのミッションとして, "Advanced Telescope for High-Energy Astrophysics (Athena)"が選ばれた.

現在の宇宙では,重力で束縛された最も大きな 系は,銀河団である.そして宇宙の物質の大部分

は,銀河団や銀河群の高温ガスという形で存在す る^{3),4)}. したがって、"The Hot Universe"のテー マに挑戦するには、銀河団ガスの分布と物理状態 を解明し、宇宙の歴史の中でどのように進化して きたのかを明らかにしなければならない. "The Energetic Universe"のテーマに挑戦するには、 近傍から最遠方に至るまで、濃い塵の中に奥深く 隠されたものも含めて、銀河中心核の超巨大ブ ラックホールを探し出し, ブラックホールが成長 するにつれて、エネルギーや物質がどのように流 入・放出されているのかを明らかにしなければな らない. 銀河団ガスの温度は通常数千万度であり X線で輝く、また超巨大ブラックホールの事象の 地平面近傍でも,高エネルギー現象が起こり,X 線が発生する. このように, "The Hot and Energetic Universe"のサイエンステーマに挑むには、 X線観測が柱になる.したがってAthenaはX線 天文衛星である.

2. Athena 搭載機器

サイエンステーマの解明のため,Athenaは三 つの鍵となるX線検出機器を搭載する(図1).

「すざく」10周年記念特集

図1 X線天文衛星Athenaとその搭載機器.

図2 ウォルターI型X線光学系.

- Silicon Pore Optics (SPO): シリコンポア光学 系技術を用いた大面積かつ高角度分解能のX 線望遠鏡.
- X-ray Integral Field Unit (X-IFU): 超伝導遷 移端温度計 (Transition Edge Sensor; TES) を利用した高エネルギー分解能X線カロリ メーター.
- Wide Filed Imager (WFI): シリコン DEPFET センサーを用いた広視野X線検出器.

以下でそれぞれの特徴を紹介する.

2.1 X線望遠鏡SPO

宇宙観測用X線望遠鏡は、ウォルターI型光学 系⁵⁾を採用している(図2).これは、バウム クーヘン状に並べた反射鏡内面でX線を小角度で 2回反射させ、焦点へと集光する光学系である. 角度分解能を高めるには、反射鏡の形状精度を向 上させなければならない.そのためには、通常は 硬くて丈夫な反射鏡基板を用いる必要がある.す ると、1枚のX線反射鏡が重くなるため、1台の

図3 SPOによるX線望遠鏡.上左: 溝を形成した シリコン基板.上右: 反射面コーティングを 行ったシリコン基板を積層したもの.中左: SPOモジュール.中右: モジュールを並べた X線望遠鏡.下:一つ一つの穴がウォルターI 型光学系として機能する様子.

望遠鏡に搭載する総数を増やすことができない. つまり,ロケットによる打ち上げ可能な限られた 重量で,望遠鏡の角度分解能と集光能力(有効面 積)の両方で最高度の性能を出すことは,一般に は非常に難しい.

AthenaのX線望遠鏡はこの課題を克服するた めに、Silicon Pore Optics (SPO) によるX線望 遠鏡を搭載する(図3). これは、軽量ながらもX 線結像光学素子として十分な形状精度と表面粗さ を持つ市販のシリコンのウェハーを望遠鏡基板と して使用する、シリコンウェハーを切り出し、後 で積層したときにウォルターI型になるように、 基板厚みに僅かに傾斜をつける. 基板にリブを切 り出した後、反射面金属(イリジウムなど)を付 ける.シリコン基板を望遠鏡半径に合わせて曲 げ、リブをスペーサーとして積層し、モジュール を作る. モジュールには、約2mm×0.6mm程 度の穴(穴のサイズはまだ最適化中である.)が たくさん形成され、この一つ一つがウォルターI 型光学系として機能する. このモジュールを 1,000個程度並べて直径約3m程度のX線望遠鏡 を形成する. SPO技術を用いた結果. 焦点距離

「すざく」10周年記念特集

図4 TES X線カロリメーター X-IFU¹¹⁾

12 m, 角度分解能約5秒角^{*1},1 keVのX線に対 する有効面積2 m²のX線望遠鏡が実現できると 期待されている⁶⁾.

2.2 X線カロリメーター X-IFU

X線カロリメーターは、素子にX線光子が吸収 される際の温度上昇を測定し、X線光子のエネル ギーを精密測定する.回折格子と異なり、銀河団 や超新星残骸などの空間的に広がった天体からの X線でも、スリットなしで高効率で分光できる. またエネルギー分解能が、X線光子のエネルギー に依存しない.X線カロリメーターによるX線天 文学は、本当はすざく衛星⁷⁾あるいはその前の ASTRO-E衛星が先鞭を付ける予定だったが、残 念ながら成功しなかった.2016年に打ち上げ予 定のASTRO-H衛星に搭載され⁸⁾⁻¹⁰⁾、新しいX 線天文学を切り開くと期待されている.

AthenaのX線カロリメーター (X-ray Integral Field Unit; X-IFU)¹¹⁾は、すざく衛星やASTRO-H 衛星のカロリメーターの発展版にあたる(図4). ASTRO-Hのカロリメーター Soft X-ray Spectrometer (SXS)¹⁰⁾との性能の比較を表1に掲げ る.SXSが温度上昇測定に半導体温度計を使用す るのに対して、X-IFUは超伝導遷移端温度計を使 用する.これにより、エネルギー分解能が上昇し ている.また、素子のピクセル数も100倍以上に

表1 Athena X-IFU vs. AST	'RO-H SX	IS.
-------------------------	----------	-----

	X-IFU	SXS
エネルギー範囲 エネルギー分解能 [†]	0.2–12 keV \sim 2.5 eV	0.3-12 keV <7 eV
サイズ	直径5分角	2.9分角四方
ピクセル数	3,840	6×6

[†]: *E*=6 keVのX線に対して.

図5 広視野X線撮像器WFI¹²⁾. 左はX線の入射側 から,右はその反対方向から見た図.

増えている.SPOの優れた角度分解能と相まって,SXSでは難しい,詳細な空間分解分光が可能 になる.

2.3 広視野検出器WFI

後述するように、Athenaは高赤方偏移の活動 銀河核 (Active Galactic Nuclei: AGN) や銀河団 をX線で探し出すことも重要な目的である. そこ で、広視野をもつ撮像分光器Wide Field Imager (WFI)¹²⁾を搭載する (図5). WFIはMOS型の DEPFETを用いた検出器である.現行のX線天 文学では, 撮像分光素子としてX線CCDが主流 となっており、CCDは各ピクセルの信号電荷を 転送して順に読み出す方式をとる.したがって全 ピクセル読み出しに数秒かかるという欠点があ る. もしAthenaにX線CCDを搭載したら、SPO が大面積を誇るので、1回の露光で一つのピクセ ルに複数以上の光子が到来し(パイルアップ), 一つの光子のエネルギー測定が不可能になるだろ う. これに比べてDEPFETは、転送しないで読 み出すことが可能で、そのため読み出しが速い. エネルギー分解能はX線CCDと同等であり. 6 keVのX線に対して、約130 eVである.図5 に

*1 Half Power Diameter (HPD) で評価した値. すなわち,点光源からのX線を焦点面に集光したとき,半分の光量を 含む円の直径.

図6 WFIによる, z=2, M₅₀₀=3.5×10¹³ M_☉の遠方銀河団の観測シミュレーション. 左: X線イメージ. 右: 輝度 分布. 文献12より.

あるように、約40分四方の視野を四つの素子で カバーし、各素子は512×512程度のピクセル数 である.約0.5ミリ秒で1素子を読み出すことが 可能である.またX線CCDの場合、宇宙線によ る放射線損傷で電荷転送効率が徐々に悪化し、エ ネルギー分解能が悪くなるという現象が避けられ なかった.しかし電荷転送のないDEPFETでは、 そのような性能の経年劣化はないと期待されてい る.

3. 科学目標

この章では、Athenaが挑戦する科学目標の、 ほんのいくつかを紹介しよう.

まず "Hot Universe" 関係のテーマについて述 べる.銀河団・銀河群は、ダークマターによる重 力ポテンシャルの井戸の中に、バリオンが落ちて 溜まっていくことによって形成される.この形成 過程は、おそらく*z*~2から開始すると予想され ている.そして、おそらく非重力的な加熱過程 が、バリオンの集積に大きな影響を与えると考え られる.したがってバリオンの集積過程を解明す るには、*z*>2にあると思われる宇宙最初の高温 ガスで満たされた銀河団を探し出さなければなら ない.Athenaは約5年のミッション寿命が想定 されており、その間にWFIによるサーベイ観測 で、 $z>2 \circ M_{500}>5 \times 10^{13} M_{\odot}$ の銀河団を50個程 度探し出すことが期待されている.ここで、 M_{500} とは、平均密度が宇宙臨界密度の500倍になる半 径の内側に含まれる質量である.例えば図6のよ うなX線イメージが得られると予想される.この イメージから輝度分布が得られ、スペクトルから わかる温度、密度の情報を合わせると、銀河団ガ スのエントロピー分布がわかる.エントロピー分 布は、重力以外の加熱過程がどの程度効いている のかを反映している¹³⁾.また、遠方銀河団を X-IFUで分光すると、図7のようなスペクトルが 得られる.この詳細なX線スペクトルから、銀河 団ガスの温度、密度、重元素組成比が精度よくわ かる.近傍銀河団の重元素組成比と比較すれば、 宇宙の化学進化の解明が期待できる.

次に"Energetic Universe"関連のテーマにつ いて述べよう. 超巨大ブラックホール (Super-Massive Black Hole; SMBH) がどのようにして誕 生したのかを知るには、おそらく $z\sim6-8$ にさか のぼり、誕生したばかりのSMBHをもつAGNを 探し出し、その当時の成長(=質量降着)と、銀 河に与える影響を解明しなければならない. WFIによるサーベイ観測で、z=6-8で400個以 上のAGNが発見できると期待されている¹⁴⁾. こ のサンプルを用いれば、図8のような光度関数を

「すざく」10 周年記念特集

構築出来る. この光度関数によって, SMBHが 誕生初期にどのように成長したのかを知ることが できる¹⁴⁾.

SMBHは初期の成長に続いて、z~1-4で分厚 い星間物質や塵に覆われる時代を迎え、激しい質 量降着で成長すると考えられている.このような AGNは、SMBHの急激な激しい成長を暴くため

図7 X-IFUによるz=1の遠方銀河団のスペクトル のシミュレーション. 温度kT=3 keV, X線光 度 $L_X=10^{44}$ erg s⁻¹を 仮 定. XMM-Newton, Chandra, ASTRO-H SXSに対するシミュレー ションも示されている. 丸囲みは, 化学進化 解明のために重要な特性X線. 文献13より.

の鍵を握る種族だと考えられている. 図9に示す ように, Athenaによれば, この種族が20個以上 検出されることが予想される. そして, スペクト ルを解析することで, 周辺の物質量や, 質量降着 率がわかり, SMBHの成長の様子を知ることが できると期待されている¹⁸⁾.

ほかのサイエンステーマについては, Athena ウェブページのサイエンスサポートドキュメン ト¹⁹⁾ を参照されたい.

4. 日本の役割

現在のところ,ASTRO-Hより後の国際X線天 文台としては,Athenaが世界で唯一の確定した プロジェクトである.X線天文学は,飛翔体がな ければ行うことができない.2030年代以降の世 界のX線天文学の発展を支えるために,日本の高 エネルギー宇宙物理学連絡会(高宇連)は, Athenaをサポートし,すざく衛星やASTRO-H 衛星などの開発から得た経験を,Athenaの成功 のために生かすことを決断した.宇宙科学研究所 にAthenaワーキンググループ設置されており, 現在松本が主査を務めている.

現在AthenaはフェーズAに入っている. 2020 年頃に予定されているミッション選択までは,実

図8 WFIサーベイ観測で期待される,高赤方偏移AGNのX線光度関数.実線およびデータ点は,あるモデル¹⁵⁾ から予想される光度関数と,それを用いたシミュレーション.上部の数値は,各ビンで検出されるAGNの 数. 鎖線や一点鎖線は,他のモデル^{16),17)}による予想を示す.文献14より.

図9 厚い塵に覆われたAGNの観測シミュレーション¹⁸⁾. 左: z=2.59のAGNのWFI観測のシミュレーション. 観測時間1メガ秒. Chandra衛星による4メガ秒の観測シミュレーションも示されている. 右: 4メガ秒で5.7平 方度の領域をWFIでサーベイ観測した場合に予想される,厚い塵に覆われたAGNの数. Chandra衛星では, 4メガ秒でも0.1平方度しか観測できず,ずっと少ない数しか検出できない.

現可能性、サイエンスへのインパクトをもとに、 各機器の詳細なコンフィグレーションを検討す る. この調査をリードするため, Athenaサイエ ンススタディチーム (ASST) がESAによって結 成されており、日本からは松本が参加している. また、打ち上げまでまだ10年以上もあるのに、 Athenaはすでにサイエンス観測の素案の立案を 開始している*2. キープロジェクトである "Hot and Energetic Universe"の達成はもちろん, 公 開天文台としてほかにどのような観測を遂行すべ きかの検討が行われている. ASSTの下部組織と してAthenaサブワーキンググループが. 各観測 カテゴリーごとに結成され、日本の研究者約30 人が参加している. そのうち, 松本をはじめとす る7名はサブワーキンググループのリーダーを務 めており,観測計画に日本の研究者の意志を反映 すべく, 議論に参加している.

ミッション機器開発として、日本に大きく期待 されているのが、X-IFUの冷凍機システム開発で ある.X-IFUは約50 mKまで冷却しなければな らない.この冷却系は、検出器を冷却する検出器 クーラー部、検出器クーラー部を覆うシールド クーラー部に分かれる.日本は,すざく衛星や ASTRO-H衛星,赤外線衛星のあかりやSPICA などを通じて,冷凍機開発の経験を蓄積してい る.Athenaの前進であるIXO計画²⁰⁾時にも,日 本にはカロリメーターの冷凍機システム開発が期 待されていた.このような経緯も踏まえ,日本に はシールドクーラー部への貢献が大きく期待され ている.具体的には300 Kから4 Kの熱シール ド,および約20 K,約100 Kの熱シールドを冷却 する機械式冷凍機,その駆動回路,および,必要 な周辺装置の開発である.一方,WFIやSPOの ハードウェア開発に関しては,日本の参加は現在 議論中である.また,Athena TOO観測に対応す る地上局や,キャリブレーションに対する貢献 も,現在議論中である.

5. まとめ

Athenaは、2030年代、世界で唯一の大型X線 天文台となるだろう.すざく衛星で先鞭を付けた かったX線カロリメーターによるX線天文学は、 ASTRO-H衛星でいよいよ実現され、そして Athenaでさらに発展する.本稿で説明した"Hot

*2 正直私は、「ASTRO-Hのカロリメーターのデータを見てから、じっくり議論したほうが良いのではないか」と思い、そのようにASSTミーティングでも発言しているが、この時期から観測プランを立てるのがヨーロッパ流のようである.

「すざく」10周年記念特集

and Energetic Univer"の科学目標のほかにも, さまざまな観測で成果を上げ,高エネルギー天文 学の新たな時代を切り開くに違いない.日本は, これまでの経験を生かしてAthenaを成功に導き, また大きな科学的成果を上げていきたい.

謝 辞

本稿は、一般の天文月報の読者には、初めての Athenaの紹介文となるだろう.このような機会を 与えていただいた天文月報編集委員会の皆様に感 謝いたします.また、主にオランダのESTECで、 数カ月に一度開かれるASSTミーティングへの参 加にあたっては、宇宙科学研究所より旅費の支援 をいただいています.改めてここに感謝いたしま す.

参考文献

- "Cosmic Vision: Space Science for Europe 2015– 2025," ESA Brochure, Vol. BR-247, 2005
- 2) Nandra K., et al., 2013, arXiv: 1306.2307
- Fukugita M., Hogan C. J., Peebles P. J. E., 1998, ApJ 503, 518
- 4) Shull J. M., Smith B. D., Danforth C. W., 2012, ApJ 759, 23
- 5) Wolter H., 1952, Ann. Phys. 445, 94
- 6) Willingale R., et al., 2013, arXiv: 1307.1709W
- 7) Kelly R. L., et al., 2007, PASJ 59, S77
- 8) 高橋忠幸, 2016, 天文月報109, 31

- 9) Takahashi T., et al., 2014, Proc. of SPIE 9144, 914425-3
- 10) Mitsuda K., et al., 2014, Proc. of SPIE 9144, 91442A-1
- 11) Barret D., et al., 2013, arXiv: 1308.6784
- 12) Rau A., et al., 2013, arXiv: 1308.6785
- 13) Pointecouteau E., et al., 2013, arXiv: 1306.2319P
- 14) Aird J., et al., 2013, arXiv: 1306.2325
- 15) Aird J., et al., 2010, MNRAS 401, 2531
- 16) Gilli R., et al., 2007, A&A 463, 79
- 17) Silverman J. D., et al., 2008, ApJ 679, 118
- 18) Georgakakis A., et al., 2013, arXiv: 1306.2328
- 19) Athenaサイエンスサポートドキュメントhttp:// www.cosmos.esa.int/web/athena/supporting-sci-documents
- 20) White N. E., et al., 2010, X-ray Astronomy 2009; Present Status, Multi-Wavelength Approach and Future Perspectives 1248, 561 (arXiv: 1001.2843)

The Athena Project—Advanced Telescope for High-Energy Astrophysics— Hironori MATSUMOTO

Center for Experimental Studies, Kobayashi– Maskawa Institute (KMI), Nagoya University, Furocho, Chikusa-ku, Nagoya 464–8602, Japan

Abstract: ESA's large space mission, Athena, will be the only great X-ray observatory in the 2030's. Athena is expected to open the new frontier of X-ray astronomy.