The Study of the distance from the Earth to the Sun, and the Earth's Orbit around the Sun through Analyzing Photographic Images.

Miss Phawinee Thawiphan (Grade 11) Miss Prita Phudwongjit (Grade 11)
[Suwannakhuhapittayasan School, Nongbualumphu province, Thailand]

Abstract

The study of this project aims to find the distance from the Earth to the Sun and examine the orbital eccentricity of the Earth around the Sun. The investigation was conducted on the days of Aphelion and Perihelion from the Time and Date website (*1). The plan involved photographing the Sun from July 4, 2022, to May 10, 2023, using a camera with a 10 -inch Dobsonian telescope. A total of 56 solar images were covered, capturing reference star images for angular distance comparisons using Stellarium Program. We used 56 solar images to measure for size using Adobe Photoshop, calculating the angular diameter by comparing with the angular distance of the reference star. The distance from the Earth to the Sun on different days and times was calculated. The study revealed that the maximum distance from the Earth to the Sun was 1.553×10^{8} kilometers, the minimum distance was 1.498×10^{8} kilometers, and the Earth's orbit around the Sun is elliptical with an eccentricity of 0.0181 , showing a deviation of 8.38 percent.

Introduction

The Earth is a satellite of the Sun, and its orbit around the Sun forms an ellipse. The Earth has an average distance of 149.6 million kilometers from the Sun. The closest point to the Sun is called Perihelion, and the farthest point is called Aphelion. Due to the elliptical orbit, the apparent size of the Sun varies each day. This phenomenon inspired the researchers' interest in studying the eccentricity of the Earth's orbit around the Sun and the distance from the Earth to the Sun based on photographs of the Sun. Method

Data Collection

1) The researcher searched for the dates and times of the Sun's closest position to the Earth (Perihelion) and the farthest position from the Earth (Aphelion) to plan the photography schedule, using the Time and Date website, 2) Captured images of the Sun from July 4, 2022, to May 10, 2023, with significant dates being July 4, 2022 (Aphelion) and January 4, 2023 (Perihelion,) and 3) Photographed reference stars.

Data Analysis

In the study, we conducted the following procedures: 1) Measured the angular distance of reference stars with Stellarium. 2) Determined the angular distance of reference stars from photographs using Adobe Photoshop. 3) Measured the Sun's size from photographs with Adobe Photoshop as Figure 1.4) Calculated the angular diameter of the Sun, reference stars, and Earth-to-Sun distance. 5) Computed Earth-to-Sun distances on various days and times using the formula $\tan (\varnothing / 2)=(D / 2)$ / R (where $\varnothing=$ apparent angular diameter of the Sun, $D=$ Sun's center diameter $1.391 \times 10^{6} \mathrm{~km}, \mathrm{R}=$ distance from the Earth to the Sun). 6) Calculated Earth's orbit eccentricity using eccentricity $=\left(R_{\max }-R_{\min }\right) /\left(R_{\max }+R_{\min }\right)$ (where $R_{\max }=$ maximum Earth-to-Sun distance, $\mathrm{R}_{\text {min }}=$ minimum Earth-to-Sun distance).

Figure 1: Measuring the Sun's size

Conclusion

From Figure 2 and Table 1, studying the eccentricity of Earth's orbit around the Sun and the distance from the Earth to the Sun, it is observed that the Earth's orbit forms an elliptical shape. The farthest Earth-to-Sun distance occurs at Perihelion on July 4, 2022, measuring 1.553×10^{8} kilometers. The closest distance, at Aphelion on January 4, 2023, is 1.498×10^{8} kilometers. The eccentricity of Earth's orbit around the Sun is calculated as 0.0181 , resulting in a deviation of 8.38 percent.

Figure 2: Graph of the distances from the Earth to the Sun related to time
Table 1: The Sun's angular diameter and Distance between the Earth and the Sun

day	Date_Time																		
1	0407122_1224	12	0.5132	1.553×10^{8}	41	1308/22_15.13	975	0.5158	1.545×10^{8}	96	07/10122_14.48	2295	0.5231	1.524×10^{8}	173	23112122_15.52	4144	0.5312	1.500×10^{81}
3	06,07/22_12	60	0.5132	1.553×10^{68}	47	8/22	1117	0.5163	$1.544 \times 10^{\text {a }}$	101	121022_12.23	2412	0.5249	1.518×10^{8}	177	27712122_15.18	4239	0.5315	1.499×10
14	722	324	0.5140	1.551×10^{88}	50	08/22	1192	0.5168	1.542×10	121	01/11122_12.49	2893	0.5262	1.515×10	185	040123_14.30	4431	0.5320	1.498 $\times 1$
15	18007122_1522	351	0.5140	1.551×10^{88}	51	2308/22_11.2	1211	0.5168	$1.542 \times 10^{\text {a }}$	122	02/11/22_15.41	2920	0.5262	1.515×10	193	1201/23_15	4623	0.5317	1.499×10^{8}
16	190722	376	0.5140	1.551×10^{88}	53	708/22	1311	0.5171	1.541×10^{9}	123	Os/11/22_15.15	2963	0.5262	$15 \times$	194	130123_15.33	4648	0.5315	1.499×10^{8}
17	2007722_15.27	399	0.5142	1.550×10^{8}	58	30008/22_11.58	1380	5175	1.540×10^{9}	124	0411122_15.47	2968	0.5264	1.514×10	198	1701123_15.00	4743	0.531	1.500×10^{8}
20	2307722_16.50	473	0.51	1.550×10^{80}	60	0109/22_15.07	1431	0.5176	1.540×10^{9}	127	07/11/22_16.20	3040	0.5267	$1.513 \times 10^{\circ}$	201	2001123_14.4	4815	0.5310	1.501×10^{8}
21	24,07/22_16	498	0.5145	1.549×10^{88}	61	0209122_16	1456	0.5176	1.540×10^{4}	136	1611/22	3255	0.5281	1.510×10	223	11022/23_15	5343	0.5292	$1.506 \times 10^{\text {d }}$
22	2507122_15.40	520	0.5145	1.549×10^{8}	65	06/09/22_12.27	1548	0.5180	1.539×10^{9}	137	17/11/22_15.42	3280	0.5282	$1.509 \times 10^{\circ}$	236	24022/23_15.56	5656	7	1510×10^{8}
23	2807722_15.47	544	5145	1.549×10^{68}	78	19109/22_15.09	1863	5201	1.532×10^{4}	158	0812722.15.31	3784	0.5299	1.504×10^{6}	250	0903/23_16.15	599	0.5262	1.515×10^{8}
25	2807122_15.36	592	0.5146	1.549×10^{88}	81	2209/22_15.07	1935	0.5204	1.531×10^{9}	164	14/12/22_15.33	3928	0.5303	1.503×10^{6}	263	2203/23_13.47	6302	0.5249	1.518×10^{8}
29	0108/22_17.06	699	0.5150	1.548×10^{80}	85	26/09/22_15.11	2031	0.5214	1.529×10^{9}	165	155/12/22_15.23	3951	0.5304	$1.503 \times 10^{\circ}$	274	0204/23_13.11	6565	0.523	1.524×10^{8}
37	0908/22_15.38	880	0.5155	1.546×10^{6}	96	2709/22_1234	2053	0.5216	1.528×10^{9}	166	16121222_15.29	3975	0.5307	1.502×10^{6}	297	2504/23_12.20	7116	0.5213	1.529×10^{8}
38	1008822_15.07	503	0.5155	1.546×10^{8}	94	05/10/22_15.20	2247	0.5229	1.524×10^{9}	172	2211222.15 .06	4119	0.5312	1.500×10^{6}	312	10055/23_12.07	7476	0.5191	$1.535 \times 10^{\text {d }}$

Reference

Puripat Tanachaiyasinwong and Thanaphon Tancharoen. (2019). Utilizing Moon Photographs for Calculating Angular Diameter, Apparent Size, and Distance from Earth to the Moon. Bang Pakok Wittayakom School, Bangkok.
Aparna Kher. (2022). Perihelion and Aphelion. Retrieved June 29, 2022, from https://www.timeanddate.com/astronomy /perihelion-aphelion-solstice.html.(*1)

