Q06b

非等方磁気流体乱流の統計理論 1.シア・アルフヴェン乱流のDI A理論

中山薫二

We develop a statistical theory of strong, homogeneous and anisotropic MHD turbulence within a framework of the Eulerian direct-interaction approximation (DI approximation or DIA). Analysis is concentrated on stationary shear-Alfvén turbulence of which mean magnetic fileld is parallel to the z-direction. We assume that the inertial range (InR) is much larger than the energy-containing range (ECR) in the sense that $p_{\perp}, |p_z| \ll k_{\perp}$ for $p \in ECR$ and $k \in InR$. (The subscript \perp means a component perpendicular to the mean magnetic field.) Then, we can obtain DIA-equations governing time-evolution of the correlation matrix and the propagator matrix in analytically solvable form. The solutions of the DIA-equations include both an Alfvénic oscillation factor depending on k_z and a damping factor depending on k_{\perp} . Applying the solutions to the DIA energytransfer equation in the wavenumber-space, we can show high anisotropy of energy-cascades. That is, the energy-cascades occur only in the k_{\perp} -direction while k_z -cascades are inhibited. Therefore, we can conclude that InR extends in the k_{\perp} -direction much further than ECR while the k_z -width is the same as ECR. Motivated by this conclusion, we assume functional form of the energy-spectrum of InR to be $E(k_{\perp}, k_z) = E_{\perp}(k_{\perp})\delta(k_z)$, and find that $E_{\perp}(k_{\perp}) \propto k_{\perp}^{-5/2}$. Thus, the one-dimensional spectrum, $k_{\perp} \int_{-\infty}^{\infty} dk_z E(k_{\perp}, k_z)$, is proportional to $k_{\perp}^{-3/2}$.