N23a

The detection of C_{60} in the well-characterized planetary nebula M1-11

大塚雅昭 (ASIAA/STScI), Fransica Cemper(AISAA), Siek Hyung(Chungbuk National Univ.), Benjamin Sargent(RIT/STScI), Margret Meixner(STScI), 田実晃人 (NAOJ), 柳澤顕史 (NAOJ)

We performed multiwavelength observations of the young planetary nebula (PN) M1-11 and obtained its elemental abundances, dust mass, and the evolutionary status of the central star. The *AKARI*/IRC, VLT/VISIR, and *Spitzer*/IRS spectra show features due to carbon-rich dust, such as the 3.3, 8.6, and 11.3 μ m features due to polycyclic aromatic hydrocarbons (PAHs), a smooth continuum attributable to amorphous carbon, and the broad 11.5 and 30 μ m features often ascribed to SiC and MgS, respectively. We also report the presence of an unidentified broad feature at 16–22 μ m, similar to the feature found in Magellanic Cloud PNe with either C-rich or O-rich gas-phase compositions. We identify for the first time in M1-11 spectral lines at 8.5 (blended with PAH), 17.3, and 18.9 μ m that we attribute to the C₆₀ fullerene. This identification is strengthened by the fact that other Galactic PNe in which fullerenes are detected, have similar central stars, similar gas-phase abundances, and a similar dust composition to M1-11. The weak radiation field due to the relatively cool central stars in these PNe may provide favorable conditions for fullerenes to survive in the circumstellar medium. Using the photo-ionization code CLOUDY, combined with a modified blackbody, we have fitted the ~0.1–90 μ m spectral energy distribution and determined the dust mass in the nebula to be ~3.5×10⁻⁴ M_{\odot} . Our chemical abundance analysis and SED model suggest that M1-11 is perhaps a C-rich PN with C/O ratio in the gas-phase of +0.19 dex, and that it evolved from a 1–1.5 M_{\odot} star.