P119a

A compact outflow in a low-mass protostar with age of $\lesssim\!2500~{ m yrs}$

Ray S. FURUYA (U. Tokushima), Yoshimi KITAMURA (JAXA), and Hiroko SHINNAGA (U. Kagoshima)

In order to shed light on the earliest stage of low-mass star formation processes, we conducted interferometric observations towards an exceptionally young low-mass protostar GF 9-2 with CARMA and SMA. Our observations were carried out in the dust continuum emission at $\lambda = 3.3$ mm, 1.1 mm and 840 μ m and the ¹²CO J = 3 - 2 line. The continuum imaging detected a single source with a deconvolved effective radius of 250 ± 30 AU at the center of the cloud core. A total mass of $M_{tot} = 0.06 \pm 0.02 M_{\odot}$ was derived through an analysis on spectral energy distribution of the the central source. Comparing a mean column density deduced over the radius and the previously derived radial density profile, we concluded that a profile of $\rho(r) \propto r^{-2}$ holds in $r \gtrsim 250$ AU. Namely an inner free-fall region, $\rho(r) \propto r^{-3/2}$, has not grown up to the ~250 AU radius, yielding the protostar's age of $\tau_{\text{protostar}} \lesssim 2 \times 10^3$ yrs. Furthermore the mass estimate in conjunction with the previously derived mass accretion rate (\dot{M}_{acc}) gave us the duration of the accretion, $\tau_{acc} \sim M_{tot}/\dot{M}_{acc} = (2.6 \pm 0.8) \times 10^3$ yrs. Spectroscopic imaging of the CO line revealed that the continuum source is driving a molecular outflow whose lobe lengths range between 1300 AU and 1600 AU. The outflow lobes are found to be one of the youngest (dynamical timescale; $\tau_{dyn} \sim 360-1600$ yrs), the least massive ($M_{lobe} \sim 10^{-5} - 10^{-4} M_{\odot}$), and the least powerful (momentum rate; $F_{CO} \sim 10^{-7} - 10^{-5} M_{\odot}$ km s⁻¹ yr⁻¹) ones known to date. All the results reinforce our assertion that the putative protostar would be at the first core phase.