X33a SXDF-ALMA 1.5 arcmin² deep survey. A compact dusty star-forming galaxy at z=2.5.

但木謙一(MPE)、河野孝太郎(東京大学)、児玉忠恭(国立天文台)、五十嵐創(Kapteyn Astronomical Institute, University of Groningen)、SXDF-ALMA deep survey チーム

We present results from the SXDF-ALMA 1.5 arcmin² deep survey at 1.1 mm using Atacama Large Millimeter Array (ALMA). The map reaches a 3σ depth of 165 μ Jy/beam and covers 11 H α -selected star-forming galaxies at z=2.53 and one at z=2.19. We have detected continuum emission from four of our H α -selected sample. They are all red and have stellar masses of log $(M_*/M_{\odot}) > 10.9$ while the other blue, main-sequence galaxies with log (M_*/M_{\odot}) =10.0-10.8 are exceedingly faint, < 280 μ Jy (2 σ upper limit), corresponding to a gas mass of log $(M_{\rm gas}/M_{\odot})$ =10.2 at $z\sim2.5$. The non-detection raises the possibility that a conversion factor from monochromatic submillimeter luminosity to gas mass is not universal.

The 1.1 mm-brightest galaxy is associated with a compact ($R_e < 1 \text{ kpc}$), dusty star-forming component. Given high gas fraction ($\sim 40\%$) and high star formation rate surface density ($250 M_{\odot} \text{yr}^{-1} \text{kpc}^{-2}$), the centrally-concentrated starburst can within less than 80 Myr build up a stellar surface density within the core matching that of compact quiescent galaxies at $z \sim 2$, provided 20% of the total gas is converted into stars.