P149a Vibrationally-excited Lines of HC₃N Tracing the Disk Structure around the G 24.78+0.08 A1 Hyper-compact H_{II} Region

谷口琴美 (NAOJ), 田中圭 (CU Boulder/NAOJ), Yichen Zhang (RIKEN), Rubén Fedriani (Chalmers Univ. of Tech.), Jonathan C. Tan (Chalmers Univ. of Tech./Univ. of Virginia), 高桑繁久 (Kagoshima Univ./ASIAA), 中村文隆, 齋藤正雄 (NAOJ), Liton Majumdar (NISER), Eric Herbst (Univ. of Virginia)

We have analyzed ALMA Band 6 data toward the G 24.78+0.08 A1 hyper-compact H_{II} region (hereafter G 24), and report detection of vibrationally-excited lines of HC₃N ($v_7 = 2$, J = 24 - 23) that trace the disk structure around this massive protostar. The spatial distribution and kinematics of the HC₃N ($v_7 = 2$, J = 24 - 23, l = 2e) line are found to be similar to those of the CH₃CN vibrationally-excited lines ($v_8 = 1$). We derived the ¹³CH₃CH/HC¹³CCN abundance ratios in this source and compared them to the CH₃CN/HC₃N abundance ratios in Herbig Ae and T Tauri stars. The ¹³CH₃CH/HC¹³CCN ratios in G 24 are higher than the CH₃CN/HC₃N ratios in the other disks by more than one order of magnitude. The high CH₃CN/HC₃N ratios in G 24 suggest thermal desorption of CH₃CN in hot dense gas and efficient destruction of HC₃N in the region irradiated by the strong UV radiation. These results indicate that the HC₃N lines can be used as a disk tracer of massive protostars, and these nitrile species will be a good indicator for physical conditions of the disk structures. Finally, based on the two peaks seen in the free-free emission and the H30 α recombination line, we briefly discussed the possibility that the central ionizing source of G 24 is composed of a binary.