P152a High NH_2D/NH_3 ratios around the low-mass protobinary NGC1333 IRAS4A

Yoshihide Yamato (U. Tokyo), Kenji Furuya (NAOJ), Yuri Aikawa (U. Tokyo), Magnus V. Persson (Chalmers University of Technology), John J. Tobin (NRAO), Vianny Taquet (INAF), Jes K. Jørgensen (University of Copenhagen), Mihkel Kama (University of Cambridge)

Investigating molecular isotopic ratios such as D/H ratios around low-mass protostars is essential to understand the chemical origin of our Solar system. In the hot ($\gtrsim 100 \text{ K}$) region around protostars, major volatiles such as H₂O, CH₃OH, and NH₃ have sublimated from the dust grain surface to the gas phase, allowing us to constrain its abundance or isotopic ratio with radio molecular line observations. We observed multiple NH₃ and NH₂D transitions toward the protobinary system NGC1333 IRAS4A (4A1 and 4A2) with Karl G. Jansky Very Large Array (VLA) at a high angular resolution (\sim 1" or \sim 300 au). We detected NH₃ high excitation lines toward both of the binary, indicating the hot NH₃ gas in the vicinity of the protostars. Two NH₂D high excitation lines are also tentatively detected. Employing the local thermodynamical equilibrium (LTE) analysis, we found remarkably high NH₂D/NH₃ ratios of \sim 0.9 and \sim 0.5 with excitation temperatures of \sim 90 K and \sim 150 K for 4A1 and 4A2, respectively. Such high NH₂D/NH₃ ratios may indicate relatively late formation of NH₃ ices in the parental molecular cloud, or spatially unresolved physical and/or chemical structures as also hinted by the narrower line widths of NH₂D lines. The higher NH₂D/NH₃ ratio and lower excitation temperature in 4A1 may be explained as follows; only the outer surface of layered ices, which has a higher molecular D/H ratio, have sublimated in 4A1 due to its lower temperature, while ices have fully sublimated in 4A2.