Q15a Laboratory Measurement of Millimeter-wave Transitions of ${}^{13}CH_2DOH$ for Astronomical Use

Takahiro Oyama (RIKEN), Yuki Ohno (RIKEN), Akemi Tamanai (RIKEN), Shaoshan Zeng (RIKEN), Yoshimasa Watanabe (SIT), Ryohei Nakatani (RIKEN), Takeshi Sakai (UEC), Nami Sakai (RIKEN)

Methanol (CH₃OH) is an abundant interstellar species and is known to play an important role in formation of various interstellar complex-organic molecules as a mother species. As a monodeuterated methanol, CH₂DOH is one of the most abundant isotopologues of CH₃OH and it is often used to study the formation process of CH₃OH. However, the abundance of CH₂DOH needs to be carefully evaluated, because its rotational lines are often optically thick. Observations of the ¹³C substituted species, ¹³CH₂DOH, are the best way to overcome this situation. In this study, the rotational transitions of ¹³CH₂DOH have been measured in the millimeter-wave region from 216 GHz to 264 GHz with an emission-type millimeter and submillimeter-wave spectrometer by using a deuterium and ¹³C enriched sample for the first time, where the accuracy of the measured frequencies is a few kHz. The relative line intensities of ¹³CH₂DOH are also measured within the error of 10% or less in most of the frequency range. In total, 115 lines are assigned for the three torsional sub-states, e_0 , e_1 and o_1 . Effective molecular constants are tentatively derived with the aid of SPFIT program distributed by JPL. These results can be used to detect the ¹³CH₂DOH lines in space, and its detection will accelerate the studies of the deuterium fractionation of CH₃OH in various sources through accurate determination of the CH₂DOH abundance.