X46a The Most Extreme Line Emitters at $z \sim 0.8$

Yuichi Harikane, the HSC project 279

We present our deep spectroscopic observations with Subaru/FOCAS and Keck/MOSFIRE targeting two [OIII] emitters at $z \sim 0.8$ identified in the wide ($\sim 1000~\rm deg^2$) and deep ($\sim 26~\rm mag$) Subaru/Hyper Suprime-Cam survey. Our sources are some of the most extreme line emitters with rest-frame [OIII]5007 equivalent widths (EWs) of $5000-6000~\rm Å$ and H β EWs of $700-900~\rm Å$, similar to some $z \sim 7~\rm galaxies$ identified with their Spitzer color excesses. Our deep spectroscopy has successfully detected the auroral [OIII]4363 line in both targets, and the gas-phase metallicities are $\sim 0.1Z_{\odot}$ based on the direct temperature method. HeII4686 is also identified in one of the sources, implying a hard ionizing spectrum possibly produced by non-thermal ionizing sources. Comparisons with photoionization models indicate that these galaxies have very young ($< 3~\rm Myr$) and low-metallicity ($< 0.01Z_{\odot}$) stellar populations. Given a high ionizing photon production efficiency ($\log \xi_{\rm ion} = 26.4$) comparable to strong Ly α emitters found in the MUSE survey at $z \sim 4-5$, studying high-z counterparts of these galaxies using JWST is important to understand the early formation of these very young galaxies and their contribution to cosmic reionization.